

THE MATHEMATICAL COGNITION AND LEARNING SOCIETY

THE SEVENTH ANNUAL MCLS CONFERENCE

June 26-28, 2024 Washington, DC, USA

POSTERS

Poster Session 1 (Wednesday, 1:00-2:00 PM)

1. Relations between speeded naming of small exact quantities and numeracy development for 7- to 8-year-old children

Jenna Rice¹, Jo-Anne LeFevre¹, Erin Maloney², Helena Osana³, Sheri-Lynn Skwarchuk⁴

 $^1\mbox{Carleton}$ University; $^2\mbox{University}$ of Ottawa; $^3\mbox{Concordia}$ University; $^4\mbox{The}$ University of Winnipeg

2. Are digital multiplication fact recall tasks an appropriate measure of children's multiplication recall and wider mathematics achievement?

Natasha Guy¹, Charlotte Wilks², Joanne Eaves¹, Lucy Cragg², Camilla Gilmore¹

¹Loughborough University; ²University of Nottingham

3. Pathways to early success with fractions and their relation to cognitive and mathematical skills

Elena Silla¹, Alexandria Viegut², Eva Redican¹, Christina Areizaga Barbieri¹, Ilyse Resnick³, Nora Newcombe⁴, Nancy Jordan¹

 1 University of Delaware; 2 University of Wisconsin-Eau Claire; 3 University of Canberra; 4 Temple University

4. Problem characteristics affecting one-digit multiplication solving in children from Grades 5 to 8

David Maxime Mueller¹, Jérôme Prado², Catherine Thevenot¹ ¹University of Lausanne; ²University of Lyon

5. Disentangling stimulus energy from temporal duration to probe the operational momentum effect in the time domain

Marie Jacquel, Arnaud Viarouge, André Knops Université Paris Cité

6. A meta-analysis of the cross-sectional and longitudinal relations between executive functioning and math in early childhood

Bijan Tabrizian, Jane Hutchison, Ander Avdellas, Nina Bajnauth, Deborah Phillips, Ian Lyons Georgetown University

7. Triangulating cognitive processes in mathematics and reading: An invitation to unify theories of learning systems Garret Hall¹, Matthew Cooper Borkenhagen^{1,2}, Wilhelmina van Dijk³, Jason Chow⁴
¹Elorida State University: ²Elorida Center for Reading Research: ³I tab State

¹Florida State University; ²Florida Center for Reading Research; ³Utah State University; ⁴Vanderbilt University

8. The interplay between learning to think and thinking to learn: An intervention on metacognitive monitoring in arithmetic

Elien Bellon¹, Elisa Filevich², Wim Fias³, Bert De Smedt¹ ¹KU Leuven; ²Eberhard Karls Universität Tübingen; ³Ghent University

9. Evaluating the influence of symbolic sequence type and familiarity on order verification performance and strategy reporting

Michael Slipenkyj¹, James Vellan², Erika Ikeda¹, Jo-Anne LeFevre² Ian Lyons¹ ¹Georgetown University; ²Carleton University 10. Is there a relationship between frequency of home mathematical activities and children's mathematical outcomes? Data harmonisation and secondary analyses of UK-based datasets

Benjamin Hunt¹, Abbie Cahoon¹, Emma Blakey², Ella James-Brabham², Danielle Matthews², Victoria Simms¹ ¹Ulster University; ²University of Sheffield

11. Developing a rubric to evaluate how researchers report on the development of caregiver training: A systematic review

Mackenna Vander Tuin¹, Gena Nelson², Lois Ndungu³ ¹The University of Texas at Austin; ²University of Oregon; ³Southern Methodist University

12. Engagement-sensitive involvement: Parents adjust math practices based on child engagement Jiawen Wu, Carolyn MacDonald, Daniel Hyde, Eva Pomerantz

University of Illinois Urbana Champaign

- 13. Exploring the home math environment: A comparative study of time diaries and questionnaires in predicting young children's math performance Xinyun Lyu¹, Xinan Liu¹, Mingyue Pu², Jike Qin¹ 'Xi'an Jiaotong-Liverpool University; ²Kunming University
- 14. Mothers' and fathers' number talk to toddlers and associations with toddlers' number skills Nandini Rastogi¹, Alex Silver¹, Mackenzie Swirbul², Sarah Riley², Milagros Urioste Resta³, Natasha Cabrera⁴, Catherine Tamis-Lemonda², Melissa Libertus¹ ¹University of Pittsburgh; ²New York University; ³Lynn University; ⁴University of Maryland, College Park
- 15. Home numeracy and developmental delay: Lessons learned through a collaborative design process with children with disabilities Emily Wilke¹, Madison Cook¹, Taylor Lesner¹, Marah Sutherland¹, Janice Fong¹, Mackenna Vander Tuin², Kevie Drake¹, Gena Nelson¹ ¹University of Oregon; ²The University of Texas at Austin
- 16. The causal role of the home environment on children's numerical skills. A pre-registered study of a familial intervention in preschoolers Cléa Girard¹, Stien Callens², Angie De Lamper¹, Davina Van den Broek¹, Bert De Smedt¹
 ¹KU Leuven; ²Université Grenoble Alpes
- 17. Assessing the home mathematics environment and its relation with mathematics attainment: A cross-country study of Mexican and Cuban dyads

Abbie Cahoon¹, Melissa Aloma², Nancy Estévez², Carolina Jiménez Lira³, Daniela García³, Elia Veronica Benavides Pando³, Victoria Simms¹

¹Ulster University; ²Neuroscience Centre, Havana, Cuba; ³Universidad Autónoma de Chihuahua

- 18. Examining intervention effects on mathematics and domain general skills in first grade Lina Shanley¹, Madison Cook¹, Ben Clarke¹, Derek Kosty² ¹University of Oregon; ²Oregon Research Institute
- 19. Dosage response in intensive math interventions for early elementary students with or at-risk for mathematics difficulties

Anna Miller¹, Daniel Espinas¹, Daniel McNeish², Marcia Barnes¹

¹Vanderbilt University; ²Arizona State University

- 20. Equipartitioning learning of a neurodivergent student: Emerging understandings and emerging questions Angela Crawford Boise State University
- 21. It's about time: A deep dive into the contribution of timed elements in mathematics instruction Rene Grimes Tennessee Tech University
- 22. Impact of guided play from numerical learning trajectories in kindergarten

Yovanna Galaz¹, Christian Peake¹, Esmeralda Dionicio² ¹Diego Portales University, Chile - Alberto Hurtado University, Chile -Millennium Nucleus for the Study of the Development of Early Math Skills (MEMAT), Chile; ²Pontificia Universidad Católica de Chile - Millennium Nucleus for the Study of the Development of Early Math Skills (MEMAT), Chile

23. Latine Dual Language Learners' (DLLs') bilingual development in mathematics and cognition: A longitudinal latent profile analysis

Matthew Foster¹, Lisa López¹, Karen Nylund-Gibson², Shaunacy Sutter¹, Dina Naji Arch² ¹University of South Florida; ²University of California, Santa Barbara

24. Exploring the casual impact of language transparency on early numerical acquisition in children: A preregistration report

Yixi Han, Qi Zhou, Jike Qin Xi'an Jiaotong-Liverpool University

- 25. Examining the interplay of language, executive function, and early numeracy skills Yemimah King, Gary Bingham Georgia State University
- 26. A cross-national study of math language learning Taeko Bourque¹, Chang Xu², Victoria Simms³, Sheri-Lynn Skwarchuk⁴, Helena Osana⁵, Erin Maloney⁶, Jo-Anne LeFevre¹, Judith Wylie² ¹Carleton University; ²Queen's University Belfast; ³Ulster University; ⁴University of Winnipeg; ⁵Concordia University; ⁶University of Ottawa
- 27. Expressive and receptive language skills of children with and without mathematics difficulty Yang Fu¹, Jason Chow²

¹University of Maryland College Park; ²Vanderbilt University

28. Comparison of technical asl and manually coded English for learning quantitative content

Rachel Sortino¹, Christina Kim¹, Thalia Guettler¹, Katie McClyman¹, Bradley White¹, Colin Lualdi², Alicia Wooten¹, Lorna Quandt¹, Rachel Pizzie¹

- $^{1}\mbox{Gallaudet}$ University; $^{2}\mbox{University}$ of Illinois Urbana-Champaign
- 29. Does the structure of numerals in Colombian Sign Language impact deaf children's understanding of the additive composition of numbers?

Diego Guerrero¹, Alejandra Herrera², Cesar Mejia² ¹Universidad del Valle; ²Universidad San Buenaventura (Cali-Colombia)

30. Relations between children's math vocabulary and error patterns when solving math word problems

Maegan Reinhardt¹, Isabel Valdivia¹, Jisun Kim¹, Tamika McElveen², Amanda Mayes³, Michael Eiland³, Ma Bernadette Andres-Salgarino⁴, Sarah Powell⁵, Sara Schmitt⁶, Caroline Hornburg¹

¹Virginia Tech; ²Miami University; ³Purdue University; ⁴Santa Clara County Office of Education; ⁵The University of Texas at Austin; ⁶University of Oregon

- **31. Early math at home: The impact of board games on caregivers' math knowledge, interest, and confidence** Clarence Ames, Emmett Speed Utah STEM Action Center
- 32. The SNARC effect in Mayan numerals: Effects of language transparency and reading direction on novel symbolic number understanding

Emmett Speed, Cassandra Ivie, Kerry Jordan Utah State University

33. Math gender beliefs in kindergarteners utilizing mosaic approach

Macarena Angulo¹ ¹Universidad Diego Portales, Chile/Millennium Nucleus for the Study of the Development of Early Math Skills (MEMAT)

- 34. Does sharing distract you? Effects of perceptual features on third graders' partitioning strategies Caitlin Macevicius, Helena P. Osana Concordia University
- **35.** Are math-related individual differences associated with **COVID-19-related graph interpretation accuracy?** Sharon Jaramillo¹, Abigail O'Brien¹, Lauren Schiller¹, Charles Fitzsimmons², Dan Scheibe¹, Jennifer Taber¹, Karin Coifman¹, Percival Mathews, Marta Mielicki, Erika Waters ¹Kent State University; ²University of North Florida
- 36. Does introducing perceptually rich manipulatives in different ways influence how 4-5-year-old children perceive and use them to complete mathematical tasks? Megan Foulkes, Francesco Sella, Camilla Gilmore Loughborough University
- **37.** Associations between young children's flexible attention to numerical and spatial magnitudes and early math skills Mary Wagner, Marissa Brown, Molly Griffin, Mitchell Hanson, Danielle Barrett, Julia Fabian, Madelyn Hales University of Dayton
- Lessening the gap: Worked examples, self-explanation, and metacognition across levels of expertise in math learning

Melanie Prieto, Hannah Hausman University of California, Santa Cruz

Poster Session 2 (Wednesday, 5:00-6:00 PM)

1. What strategy does the development of ordinality in kindergarteners rely on: Cardinality or sequential knowledge?

Christian Peake¹, Felipe Sepúlveda², M. Inés Susperreguy³, Laura Espinoza⁴, Yovanna Galaz², Richard Merino¹, Antonia Varas²

¹Universidad Diego Portales; ²Universidad Católica de la Santísima Concepción; ³Universidad Católica de Chile; ⁴Universidad de Los Lagos

2. Validation of a novel toddlerhood self-regulation measure and examining its relations to preacademic outcomes Jorge Carvalho Pereira¹, Leanne Elliott², Portia Miller¹, Heather Bachman¹, Elizabeth Votruba-Drzal¹, Melissa Libertus¹

¹University of Pittsburgh; ²American Institutes for Research

- 3. Metacognitive control in arithmetic: A longitudinal exploration of post-error adjustments in 7-9-year-olds Eveline Jacobs, Elien Bellon, Bert De Smedt KU Leuven
- 4. Math word problem solving: Relation to spatial skill, working memory, and problem type Dania Carr, Susan Levine

University of Chicago

5. Exploring cognitive foundations of children's numerical development

Anna Karlsson, Kenny Skagerlund, Mikael Skagenholt, Ulf Träff

Linköping University

6. Exploring the impact of a portfolio of co-designed mathematics interventions that leverage executive functions

Megan Brunner¹, Karen Douglas¹, Rebecca Merkley,2 Michelle Tiu¹, Aubrey Francisco¹ ¹EF + Math Program; ²Carleton University

- 7. Cognitive-linguistic skills and preschool children's development of story problem solving: The sequential mediation roles of three levels of numeracy skills Catrina Cuina Liu¹, Xiao Zhang², Wai Ming Cheung2 ¹The Hong Kong Polytechnic University; ²The University of Hong Kong
- 8. Working with numbers: Does task content influence the measurement of executive functions and their relation to math ability?

Alexa D. Mogan¹, Nathan T.T. Lau², Amelia Murray¹, Monica Bashir¹, Eric D. Wilkey¹

¹Vanderbilt University; ²Western University

9. College students' strategy choice in fraction comparison and its relation to math achievement and executive functions

Ao Fan¹, Roberto Abreu-Mendoza², Jo Van Hoof³, Wim Van Dooran³, Miriam Rosenberg-Lee¹

 $^1 Rutgers$ University - Newark; $^2 Indiana$ University; $^3 University$ of Leuven

10. Investigating the link between Chinese students' ratio processing system and symbolic fraction comparison Xiaotong Yi¹, Connie Barroso¹, Percival Matthews² ¹Texas A&M University; ²University of Wisconsin Madison

- **11. Numerical activities of daily living in aging adults** Olivia Ewing, Sarah Pope, Kerry Jordan Utah State University
- **12. Differential magnitude estimation of big and small ratios** Nicola Morton, Sheena Henderson, Jacinta Cording, Randolph Grace University of Canterbury
- 13. Examining the role of math talk tips during parent-child shared reading Yilin Liu, Mary DePascale, Eric Dearing Boston College
- 14. Is math part of a complete breakfast?: Content analysis of math-based activities on breakfast cereal boxes Salvador R. Vazquez, Sarah H. Eason Purdue University
- 15. Associations among quantitative and qualitative dimensions of the home math environment and young children's math skills

Isabel Valdivia, Maegan Reinhardt, Jisun Kim, Ninie Asad, Lilly Nelson, Alexis Whitfield, Rachel Thompson, Caroline Hornburg Virginia Tech

- 16. Fathers' and mothers' reports of their attitudes to and experiences of the home mathematical environment Heather Lyle, Judith Wylie Queen's University Belfast
- 17. Does parent math anxiety and performance relate to math talk with toddlers? Shanttell Fernandez¹, Mackenzie Swirbul², Alex Silver¹,

Catherine Tamis-LeMonda² ¹Hunter College; ²New York University

- 18. Enhancing e-book interactions for Latine families and children Fabiola Herrera¹, Susana Beltrán-Grimm, David Purpura Purdue University
- 19. Implementing a tier 2 early numeracy intervention for students with mathematics difficulties Soyoung Park

University of Central Florida

20. Embodied-cognition intervention for numerical deficits after a stroke/brain-injury (acalculia) Yael Benn¹, Berzan Cetinkaya², Maryam Hussain², Verena Christin Pavel¹, George Kountouriotis¹, Tam Dibley¹, Mark

Jayes¹, Paul Conroy³

¹Manchester Metropolitan University; ²University of Manchester; ³Trinity College Dublin

10

- **21.** Manipulating money in math: (Whom) does it help? Styliani Politi¹, Caroline Hornung¹, Christine Schiltz¹ ¹University of Luxembourg, Luxembourg
- 22. The impact of an adaptive math learning tool focused on improving number sense a longitudinal study on NY District grade 1-3 students Margot Röell¹, Catherine de Vulpillières², André Knops²

Margot Roell', Catherine de Vulpillieres², Andre Knops² ¹EvidenceB; ²Université Paris Cité

- 23. Failure attributions and the development of math anxiety Zhe Wang, Anjali Chaudhary, Minchao Wang, Connie Barroso Texas A&M University
- 24. Examining the role of spatial, affective, and mathematical processes and gender in postsecondary precalculus Robert Wilbur¹, Kinnari Atit², Prashansa Agrawal¹, Catherine Lussier¹, Bryan Carrillo², Dylan Noack³, Yat Sun Poon¹, David Weisbart¹

¹University of California, Riverside; ²Saddleback College; ⁴Yuba College

25. Empowering math achievement: The interplay of math self-competence and math avoidance in primary school students

Sara Caviola, Alice Masi, Enrico Toffalini University of Padova

26. Math Anxiety predicts the difference in sympathetic arousal between days of math learning.

Cynthia Fioriti¹, Jiuru Wang¹, Rachel Pizzie², Ian Lyons¹ ¹Georgetown University; ²Gallaudet University

27. Psychometric properties of the Academic Anxiety Inventory in the Deaf, DeafBlind, and Hard-of-Hearing community

Christina Kim, Rachel Sortino, Rachel Inghram, Isabelle Diaz, Thalia Guettler, Taylor Delorme, Katie McClyman, Rachel Pizzie

Gallaudet University

28. Can a workshop for high school teachers influence their attitudes and beliefs, ultimately impacting both teachers' and students' classroom nervousness about maths? Isadora T. Braga-Nicoletti¹, Mariuche Gomides², Flavia H. Santos²

¹São Paulo State University; ²University College Dublin

29. The development and pilot testing of Math Lions: a math anxiety intervention for children

Colleen M. Ganley¹, Zahra Maghami Sharif¹, Sally Cole¹,

Nandrea Burrell¹, Emma Doyle¹, Olivia K. Cook¹, Federica Granello², Matthew Viverito¹, Christy Allen¹, Alexandria Meyer³, Sara Hart⁴, Maria Chiara Passolunghi² ¹Florida State University; ²University of Trieste; ³Santa Clara University; ⁴University of Waterloo

30. The influence of anxiety on the intersecting perception of space and time

Kimberly Webb-Zimmerman, Kerry Jordan Utah State University

31. Does math confidence mean math ability in school-aged girls?

Mariah Cantrell, Abiola Lawal, Annahita Modirrousta, Meechie Poston, Madelyn Buckley, Emma Longville, Kaitlyn Rosolanko, Emma Seifert, Destiny Thomas, Yvette Harris Miami University

32. The role of gesture that accompanies instruction of a statistical concept: computational versus conceptual approaches

Nina Semushina¹, Zena Levan¹, Aura Fuentes-Flores¹, Cheng Xu¹, Ruth B. Church², Susan Goldin-Meadow¹ ¹University of Chicago; ²Northeastern Illinois University

- 33. Cognitive and academic profiles of students with and without math learning difficulties Jessica Namkung University of Delaware
- 34. Strategy choices and common errors in fraction and decimal number line estimation tasks among upper elementary students Jinyoung Heo, Soo-hyun Im Hanyang University
- 35. Inhibition of the "add zero(s)" heuristic is needed to multiply by 10, 100, 1000 decimal numbers: A developmental conflict adaptation paradigm study Maria Ghazi, Grégoire Borst Université Paris Cité
- **36. Towards a cognitive archaeology of mathematics in the american southwest** Alma McKown Albuquerque Public Schools and Central New Mexico Community College
- 37. Understanding the complexity of preschool teachers' math knowledge: Insights from decontextualized versus scenario-based assessments Jiwon Ban. Elida V. Laski

Boston College

Poster Session 3 (Thursday, 1:00-2:00 PM)

- Instructional framing and math performance: The relevance of state and trait math anxiety Thomas Hunt¹, Eric Steiner²
 ¹University of Derby; ²National University
- 2. Time pressure predicts negative cognitive and affective outcomes in mathematics Raeanne N. Martell, Alexander Avdellas, Ava Cobarrubias, Vincent Miller, Howard Tai, Ian M. Lyons Georgetown University
- 3. Tactile bilateral stimulation for math anxiety: A pilot study Leyla Karami Isheqlou, Tori Dehlin, Cassey Ivie, Kerry Jordan Utah State University
- MotivUP: An innovative application to assess students' motivation for mathematics Kamila Schulz¹, Christian Peake¹, Yovanna Galaz¹, Matias Rojas¹, Diego Esperidion¹, Sara Caviola²
 ¹Universidad Diego Portales; ² University of Padova
- 5. Investigating the effects of classroom-based mindfulness on math anxiety: Does improving emotional regulation enhance math performance?

Anna George, Nadine Yildiz, Darcy Hallett Memorial University of Newfoundland

- 6. Mathematics anxiety and number processing: The link between executive functions, cardinality, and ordinality Kenny Skagerlund Linköping University
- 7. How do metacognitive experiences and math anxiety predict mathematical problem solving? Daniel Scheibe, Alissa McGill, Sharon Jaramillo, Clarissa Thompson Kent State University
- 8. The gender gap in math anxiety (and in a link between math anxiety and math performance too) is not so salient when other anxieties are controlled for Monika Szczygieł, Mateusz Hohol Jagiellonian University
- 9. Analysis of errors in student work on elementary fraction assessments

Gabriella Lyth Donofrio, Emily Singell, Allison Dennis McClure, Megyn Martin University of Missouri at Columbia

- 10. Math instruction that includes gesture improves learning for deaf and hearing children when gesture is simultaneously produced with language Zena Levan¹, Nina Semushina¹, Ruth B. Church², Naureen Hemani-Lopez¹, Susan Goldin-Meadow¹ ¹University of Chicago; ²Northeastern Illinois University
- 11. Kindergarten students' motivation: Linked to general mathematical knowledge but not to their performance on a tablet-based math game

Felipe Sepulveda^{1,2}, Antonia Varas¹, Christian Peake^{3,4} ¹Universidad Católica de la Santísima Concepción; ²Núcleo Milenio para la Ciencia del Aprendizaje (MiNSoL), Chile; ³Universidad Diego Portales; ⁴Núcleo Milenio para el Estudio del Desarrollo de las Habilidades Matemáticas Tempranas (MEMAT)

- 12. Multiplying student success in early mathematics: Sharing insights from research-practice partnerships Liza Kahwaji¹, Ayushi Chitranshi¹, Abbey Gandhi¹, Stephen Hurley², Jo-Anne LeFevre¹, Erin Maloney³, Sheri-Lynn Skwarchuk⁴, Madison Young, Chy Zhang⁴, Rebecca Merkley¹ ¹Carleton University; ²voicEd Radio, Canada; ³University of Ottawa; ⁴University of Winnipeg
- 13. Understanding arithmetic principles correlates with approximate computation ability Mingxin Yu, Bowen Xu, Shaungyu Zhang, Xinlin Zhou Beijing Normal University
- 14. Bridging the gap: A professional development program to enhance preschool teachers' confidence in stem education with a focus on early math skills Hannah Smith¹, Madison Berube², Paul Reimer² ¹Assumption University; ²AIMS Center for Math and Science
- 15. Examining math word-problem solving in 3rd-graders with math difficulty using a worked examples measure Vishakha Agrawal¹, Anna H. Miller¹, Hailey Kepiro¹, Marcia A. Barnes¹, Sarah R. Powell2 ¹Vanderbilt University; ²The University of Texas at Austin
- **16. Visualize and operate with multi-dimensional data** Minzhi Liu, Matthew Lira University of Iowa
- 17. Investigating multimodal fusion of structural and functional brain imaging components supporting the development of number processing and mathematics ability in children

Mikael Skagenholt, Kenny Skagerlund, Ulf Träff Linköping University

18. Investigating the neural underpinnings of math and reading across the lifespan

Hillary Mastarciyan¹, Devin Sodums², Ju-Chi Yu³, H. Moriah Sokolowski¹

¹Toronto Metropolitan University; ²Rotman Research Institute, Baycrest Health Sciences; ³Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health

19. Functional activation patterns in developmental dyscalculia across arithmetic, magnitude processing, and visuospatial working memory tasks

Eric D. Wilkey¹, Isabella Starling Alves¹, Lien Peters², Fu Yu Kwok³, Daniel Ansari⁴

¹Vanderbilt University; ²Ghent University; ³Macquarie University; ⁴Western University

20. EEG measurement of specific number representation in the human brain

Miaofan Chen, Richard Prather University of Maryland - College Park

21. Two sides of a similar coin? Exploring the distinct and shared neural correlates of early precursors to math and

reading

Raveena Gill, Alina Sanina, Alyssa Wright, Amy S Desroches, Stephanie Bugden University of Winnipeg

- 22. Resting state functional connectivity in 1st graders identified for math support in the classroom
 Isabella Starling-Alves¹, Lina Shanley², Madison Cook², Marcia Moore², Jolinda Smith¹, Fred Sabb², Ben Clarke², Eric
 D. Wilkey¹
 ¹Vanderbilt University; ²Oregon University
- 23. Math achievement and functional connectivity differences in young adults with and without autism Chinedu Nkwo¹, Roberto A. Abreu-Mendoza², Cory McCabe¹, William Graves¹, Miriam Rosenberg-Lee¹ ¹Rutgers University - Newark; ²Indiana University Bloomington
- 24. Does childhood experience with the abacus influence mathematics performance in adulthood? Pragati Maheshwary, Lauren Anthony, Martha Alibali University of Wisconsin-Madison
- 25. Arithmetic in two languages: Localizing simple multiplication processing in the bilingual brain Vanessa Cerda¹, Macarena Suarez-Pellicioni², James Booth¹, Nicole Wicha3 ¹Vanderbilt University; ², University of Alabama; ³University of Texas at San Antonio
- 26. Numerical processing in the parietal cortex, through the lens of acalculia cases Erin Duricy, Corrine Durisko, Julie Fiez

University of Pittsburgh

27. Teaching mathematics in early childhood education - the role of spatial reasoning in children's mathematics learning. Rachel Politt

University of Melbourne

28. Intrinsic rather than extrinsic spatial skills predict planar geometric proof performance

Yuhan Zhang, Jianing Lv, Xinlin Zhou Beijing Normal University

29. Transfer of gains from spatial training to math performance: The role of training delivery and working memory

Chloe Oi Ying Leung, Marian Hickendorff, Christine Espin,

Dietsje Jolles Leiden University

- **30. Examining kids' intuitive understanding of mechanical** system through gears task Nicole Taboada, Allison Fitch, Rain Bosworth Rochester Institute of Technology
- **31. Symbolic and non-symbolic number representations:** Leveraging language variation Clifton Langdon¹, Marie Coppola²

¹Rochester Institute of Technology; ²University of Connecticut

- 32. Whole-number magnitudes interfere with decimal processing in children across strategies, and high performers additionally process rational magnitudes Piper Rennerfeldt¹, Roberto Abreu-Mendoza², Miriam Rosenberg-Lee¹ ¹Rutgers University - Newark, NJ; ²Indiana University, Bloomington
- 33. Impact of inhibitory control and continuous magnitude on dot comparison performance in children with mathematical difficulties

Cristina Rodríguez¹, Roberto A. Ferreira² ¹Millennium Nucleus for the Science of Learning, Universidad Católica del Maule; ²Universidad de Talca

- **34. The differential developmental trajectory for symbolic and situational mathematics abilities** Chaoran Shen, Qingyuan Chen, Nan Zhang, Fengxin Diao, Pengfei Liu, Xinlin Zhou Beijing Normal University, China
- 35. Mental strategies for estimating the relative magnitude of exponential expressions

Amber Armstrong¹, Rina Harsch¹, Jeffrey Bye¹, Shashank Varma²

¹University of Minnesota; ²Georgia Institute of Technology

- **36. Situational mathematical ability lags far behind symbolic mathematical ability among middle school students** Jianing Lyu¹, Yi Liu¹, Chenye Bao², Xinlin Zhou¹ ¹Beijing Normal University; ²University of Missouri
- 37. Finger-based and verbal cardinal representations in young children born pre-term

Laurence Rousselle, Auriane Leclercq, Line Vossius, Maëlle Neveu

University of Liège

Poster Session 4 (Friday, 1:00-2:00 PM)

- 1. Math meets science: Enhancing children's interpretations of 2x2 data tables Rui Meng, Martha Alibali University of Wisconsin Madison
- 2. Diagnosing fraction misconceptions: Illustrating the development of a concept inventory for use with diagnostic cognitive assessment Katherine Rhodes, Lourdes Acevedo-Farag, Kreshnik Begolli, Drew Bailey, Siling Guo, Andres Bustamante, June Ahn, Lindsey Richland University of California, Irvine
- 3. It's me, hi, I'm in the problem, it's me Cheryll Fitzpatrick, Matthew Rideout Memorial University of Newfoundland
- 4. Undergraduates' evaluations of arguments about dividing by zero Lauren Sprague, Addie Mitchell, David W. Braithwaite Florida State University
- 5. A review of recently developed numeracy assessment, instruction and intervention resources from canada Jessica Shapiro¹, Sarah Melo², Sheri-Lynn Skwarchuk¹ ¹University of Winnipeg; ²Louis Riel School Division
- 6. SPecialized Instruction to Reach All Learners (SPIRAL) Professional Learning-Coaching Model Katie MacLean, Alison Hardy The University of Texas at Austin
- 7. Mitigating the effect of computer programming anxiety on college level and early career computer scientists Alissa McGill, Susan Fisk, Audrey Rorrer, Tom McKlin, Veronica Catete, Tiffany Barnes, Jamie Payton, Clarissa Thompson Kent State University
- 8. Math Playtime: A playful approach to socializing children's math skills at home Michele Stites, Susan Sonnenschein, Besjane Krasniqi University of Maryland Baltimore County
- 9. Is teaching mathematics hard? Is it harder to teach inclusive mathematics, computational thinking, and engineering?

Michele Stites¹, Susan Sonnenschein¹, Jonathan Singer¹, Hsiu-wen Yang², Chih-Ing Lim², Megan Vinh², Hatice Gursoy¹, Freya Kaur¹, Besjane Krasniqi¹ ¹University of Maryland Baltimore County; ²University of North Carolina Chapel Hill

10. Structural brain correlates of subtraction and multiplication performance and their interaction with age in children

Reyhan Shorbi, Macarena Suarez-Pellicioni, Firat Soylu The University of Alabama

11. Neural representation of discrete and continuous ratios: An fMRI study

Rebekka Lagacé-Cusiac, Jessica Grahn, Daniel Ansari Western University

- 12. Tracking the magnitude discrimination of two-digit number symbols with frequency-tagging EEG: a feasibility study Amandine Van Rinsveld¹, Christine Schiltz ¹Université libre de Bruxelles; ²University of Luxembourg
- 13. The neural basis of number processing and its relation to individual differences in 4th graders' math competence Xueying Ren, Marc N. Coutanche, Julie A. Fiez, Melissa E. Libertus

University of Pittsburgh

- 14. Financial Abilities: is there more to it than mathematics? A VLSM study on stroke patients Laura Danesin¹, Maria Grazia Ranzini², Arianna Menardi², Giorgia Baron¹, Gabriella Bottini³, Antonino Vallesi², Carlo Semenza², Francesca Burgio¹ ¹IRCCS San Camillo Hospital, Venice; ²University of Padua; ³University of Pavia
- 15. How the association between behavior and eventrelated potential in numerical symbol acquisition develops with grade and exercise Shuangrao Qi, Yuhan Zhang, Naiqian Luan, Xinlin Zhou Beijing Normal University
- 16. Decoding fraction magnitude from EEG signals using machine learning Brian Rivera University of Nebraska Lincoln
- 17. A study on playing cards to disentangle order and magnitude in the SNARC effect Mauro Murgia¹, Valter Prpic², Serena Mingolo¹, Krzysztof Cipora³ ¹University of Trieste; ²University of Bologna; ³Loughborough University
- 18. The relation between number line performance and mathematics outcomes: Two meta-analyses Zehra Unal¹, Züleyha Terzi², Beyzanur Yalvaç², David Geary¹ ¹University of Missouri; ²Boğaziçi University
- 19. Re-examining differences and ratios in perceptual comparisons: Dual-operational control across restricted stimulus ranges Cameron Hooson-Smith, Nicola J. Morton, Simon Kemp, Randolph C. Grace

University of Canterbury

- 20. Contrasting ANS performance and sensitivity to numerical and non-numerical information for stimuli presented in a separate or intermixed manner David Gomez¹,², Felipe Leiva^{1,2}, Valentina Giaconi^{1,3} ¹Millennium Nucleus for the Study of the Development of Early Math Skills (MEMAT); ²Universidad de O'Higgins; ³Universidad Técnica Federico Santa María
- 21. Pupillometry as a measure of error detection in mathematics

Maria Brandao, Darko Odic University of British Columbia

- 22. Exploring groupitizing behaviors in first graders: A study on counting strategies and finger representations Céline Poletti, Catherine Thevenot University of Lausanne
- 23. Does eight equal eight? The role of counting knowledge in children's understanding of exact equality Khuyen Le, Rafael Núñez, David Barner University of California, San Diego
- 24. Individual differences in human clustering ¹Shubh Goyal, Vijay Marupudi², Sashank Varma², V.N. Vimal Rao¹ ¹University of Illinois at Urbana-Champaign; ²Georgia Tech
- 25. Might visual clustering underlie numerosity estimation? Vijay Marupudi¹, Shubh Goyal², Vimal Rao² ¹Georgia Tech; ²University of Illinois
- 26. Numerical values modulate size perception Aviv Avitan Ben-Gurion University of the Negev
- 27. Maternal education and motor skills: Predictors of early precursor math skills in three-and-four-year-old Mexican children

Elia Verónica Benavides Pando, Carolina Jiménez Lira, Daniela Susana Paz García, Martha Ornelas Contreras, María Inés Susperreguy

Universidad Autónoma de Chihuahua; Pontificia Universidad Católica de Chile

28. Examining the developmental trajectories of basic numerical skills and the contribution of domain-general cognitive factors

Hanna Weiers¹, Sohnia Ghattaura¹, Franz Wortha¹, Camilla Gilmore¹, Gaia Scerif², Iro Xenidou-Dervou¹, Francesco Sella¹ ¹Loughborough University; ²University of Oxford

29. Nonsymbolic proportional estimation profiles are not associated with better magnitude understanding at the early stages of fraction instruction

Roberto A. Abreu-Mendoza, Elizabeth A. Gunderson Indiana University, Bloomington 30. Correlation between symbolic and non-symbolic matemathical skills in 4-year-old children measured through a digital tool

Maria Agustina Mendez Jurado¹ ¹Becaria Doctoral UCA-CONICET. Universidad Católica Argentina (UCA). Facultad de Psicología y Psicopedagogía. Centro de Investigaciones en Psicología y Psicopedagogía (CIPP)

- 31. Building fraction magnitude understanding through perceptual cues: A Stroop fraction number line task Robert Quintana University of Wisconsin-Madison
- 32. Boundary effects in graduate students' memory of the numerical magnitude of p-values V.N. Vimal Rao¹, Ali Fulsher², Jeffrey K. Bye² ¹University of Illinois at Urbana-Champaign; ²University of Minnesota
- 33. Is 16/9 more than 13/8? Fraction comparison performance depends on symbolic format, problem features, and attitudes Jennifer Murray, Megan Smitz, Martha Alibali University of Wisconsin - Madison
- 34. Do people rely on symbolic number strategies in discrete proportional reasoning? Paige Dadika, Michelle Hurst Rutgers University
- 35. Processing speed links approximate number system and arithmetic abilities Shiqiao Shen, Wei Wei Zhejiang University, China
- 36. Do fine motor skills and finger gnosia predict the development of arithmetic through finger-use? A longitudinal study to investigate the functionalist hypothesis

Maëlle Neveu, Laurence Rousselle University of Liège

37. Seeing the whole picture: Fraction magnitude processing using non-symbolic fractions Saranya Kumary, Amanda George, Darcy Hallett Memorial University of Newfoundland